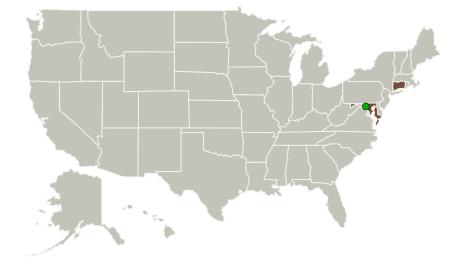
ELID Grinding of Large Aspheric Optics, Phase I



Completed Technology Project (2011 - 2011)

Project Introduction

Large aperture aspheric optics are among the most susceptible optical surfaces to the accumulation of periodic surface artifacts during fabrication. Periodic features are created during the manufacturing process and lead to significant degradation in imaging performance. Most research on the topic addresses polishing, and in particular smoothing of periodic features. Our proposal addresses preventing such surface artifacts during the generating and grinding processes. Prevention upstream in the process can lead to significant cost reductions and simplification of downstream polishing processes. The Phase-1 effort will study of how the introduction of an ELID insitu tool dressing technique can prevent or minimize the creation of mid and high spatial frequency surface features in the process of fabricating glass and Silicon Carbide aspheric optics and replication mandrels. We propose to construct and test an experimental platform that allows us to characterize the benefits and tune the process. We expect the result of this work to prepare the way to apply this technology to meter-class optical mirrors and replication mandrels as part of a Phase-II effort and will contribute to a strategy of cost reductions necessary for insertion of segmented aspheric and glancing incidence optics in future telescope missions.

Primary U.S. Work Locations and Key Partners

ELID Grinding of Large Aspheric Optics, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

ELID Grinding of Large Aspheric Optics, Phase I

Completed Technology Project (2011 - 2011)

Organizations Performing Work	Role	Туре	Location
Flemming Tinker Inc.	Lead Organization	Industry	Higganum, Connecticut
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations	
Connecticut	Maryland

Project Transitions

February 2011: Project Start

September 2011: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138125)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Flemming Tinker Inc.

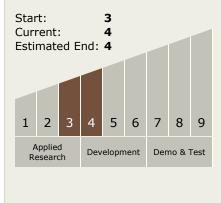
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

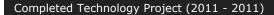
Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Kai Xin


Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

ELID Grinding of Large Aspheric Optics, Phase I

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.4 Manufacturing
 - □ TX12.4.3 Electronics and Optics Manufacturing Process

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

